Impact of oxygen chemistry on model interstellar grain surfaces
نویسندگان
چکیده
منابع مشابه
Modelling of surface chemistry on an inhomogeneous interstellar grain
Context. Many interstellar molecules are formed through grain surface reactions. These reactions are usually modelled using rate equations, while considering a homogeneous grain with only one type of binding site for each species. However, amorphicity and the irregular character of interstellar dust grains make inhomogeneous grain surfaces much more likely. Aims. The aim of this study is to inv...
متن کاملEfficient simulations of gas-grain chemistry in interstellar clouds.
Chemical reactions on dust grains are of crucial importance in interstellar chemistry because they produce molecular hydrogen and various organic molecules. Because of the submicron size of the grains and the low flux, the surface populations of reactive species are small and strongly fluctuate. Under these conditions rate equations fail and the master equation is needed for modeling these reac...
متن کاملEfficient Simulations of Interstellar Gas-Grain Chemistry Using Moment Equations
Networks of reactions on dust grain surfaces play a crucial role in the chemistry of interstellar clouds, leading to the formation of molecular hydrogen in diffuse clouds as well as various organic molecules in dense molecular clouds. Due to the sub-micron size of the grains and the low flux, the population of reactive species per grain may be very small and strongly fluctuating. Under these co...
متن کاملProbing the surfaces of interstellar dust grains: the adsorption of CO at bare grain surfaces
A solid-state feature was detected at around 2175 cm−1 towards 30 embedded young stellar objects in spectra obtained using the Infrared Spectrometer and Array Camera at the European Southern Observatory Very Large Telescope. We present results from laboratory studies of CO adsorbed at the surface of zeolite wafers, where absorption bands were detected at 2177 and 2168 cm−1 (corresponding to CO ...
متن کاملInterstellar chemistry.
In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and ato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Chemistry Chemical Physics
سال: 2018
ISSN: 1463-9076,1463-9084
DOI: 10.1039/c7cp05480g